Artificial Neural Network (ann)approach to Electrical Load Pattern Prediction: a Case Study of Obafemi Awolowo University Power House
نویسندگان
چکیده
Short-term load prediction is a key component of the daily operation and planning activities of an electric utility.In this paper, the authors utilized the concept of Artificial Neural Networks (ANNs) using the Kohonen's self organizing feature map; which is back-propagating in nature. Historical data were used to train the ANN with learning rate = 0.7 and momentum = 0.4. The proposed methodology enhances the adaptability of the systemto sudden changes or special events. The model was tested using two of the seven feeders of the Obafemi AwolowoUniversity electric network. The results of the simulation show empirically that the range of errors observed is still within the tolerance level, as this is expected to improve the decision-making in terms of distribution scheduling.
منابع مشابه
Artificial Intelligence Based Approach for Identification of Current Transformer Saturation from Faults in Power Transformers
Protection systems have vital role in network reliability in short circuit mode and proper operating for relays. Current transformer often in transient and saturation under short circuit mode causes mal-operation of relays which will have undesirable effects. Therefore, proper and quick identification of Current transformer saturation is so important. In this paper, an Artificial Neural Network...
متن کاملPREDICTION OF LOAD DEFLECTION BEHAVIOUR OF TWO WAY RC SLAB USING NEURAL NETWORK APPROACH
Reinforced concrete (RC) slabs exhibit complexities in their structural behavior under load due to the composite nature of the material and the multitude and variety of factors that affect such behavior. Current methods for determining the load-deflection behavior of reinforced concrete slabs are limited in scope and are mostly dependable on the results of experimental tests. In this study, an ...
متن کاملA comparison between knowledge-driven fuzzy and data-driven artificial neural network approaches for prospecting porphyry Cu mineralization; a case study of Shahr-e-Babak area, Kerman Province, SE Iran
The study area, located in the southern section of the Central Iranian volcano–sedimentary complex, contains a large number of mineral deposits and occurrences which is currently facing a shortage of resources. Therefore, the prospecting potential areas in the deeper and peripheral spaces has become a high priority in this region. Different direct and indirect methods try to predict promising a...
متن کاملApplication of artificial neural network (ANN) for the prediction of water treatment plant influent characteristics
Application of a reliable forecasting model for any water treatment plant (WTP) is essential in order to provide a tool for predicting influent water quality and to form a basis for controlling the operation of the process. This would minimize the operation and analysis costs, and assess the stability of WTP performances. This paper focuses on applying an artificial neural network (ANN) approac...
متن کاملElectrical Load Manageability Factor analyses by Artificial Neural Network Training
On typical medium voltage feeder, Load side management means power energy consumption controlling at connected loads. Each load has various amount of reaction to essential parameters variation that collection of these reactions is mentioned feeder behavior to each parameter variation. Temperature, humidity, and energy pricing variation or major event happening and power utility announcing to th...
متن کامل